| Titre : |
Quantum Geometry, Matrix Theory, and Gravity |
| Type de document : |
texte imprimé |
| Auteurs : |
Harold C. Steinacker, Auteur |
| Editeur : |
Cambridge : Cambridge University Press |
| Année de publication : |
2024 |
| Importance : |
XVI-402 P. |
| Présentation : |
Relie, couv. ill en coul., graph, ill. |
| Format : |
25 cm |
| ISBN/ISSN/EAN : |
978-1-00-944078-3 |
| Langues : |
Anglais (eng) |
| Catégories : |
(03.65) Mecanique quantique et theorie quantique des champs
|
| Mots-clés : |
Matrix theory Lattice gauge theory Quantum geometry Quantum mechanics |
| Index. décimale : |
03.65 |
| Résumé : |
Part I Mathematical background : 1 Differentiable manifolds. - 2 Lie groups and coadjoint orbits. - Part II Quantum spaces and geometry : 3 Quantization of symplectic manifolds. - 4 Quantum spaces and matrix geometry. - 5 Covariant quantum spaces. - Part III Noncommutative field theory and matrix models : 6 Noncommutative field theory. - 7 Yang–Mills matrix models and quantum spaces. - 8 Fuzzy extra dimensions. - 9 Geometry and dynamics in Yang–Mills matrix models. - 10 Higher-spin gauge theory on quantum spacetime. - Part IV Matrix theory and gravity. - 11 - Matrix theory: Maximally supersymmetric matrix models. - 12 Gravity as a quantum effect on quantum spacetime. - 13 Matrix quantum mechanics and the BFSS model |