| Titre : |
An Introduction To Chaotic Dynamical Systems |
| Type de document : |
texte imprimé |
| Auteurs : |
Robert L. Devaney, Auteur |
| Mention d'édition : |
3rd Ed. |
| Editeur : |
London : CRC Press |
| Année de publication : |
2022 |
| Importance : |
XII-4196 P. |
| Présentation : |
Broché. Couv. ill. en coul., graph. |
| Format : |
23 cm |
| ISBN/ISSN/EAN : |
978-0-367-23615-1 |
| Langues : |
Anglais (eng) |
| Catégories : |
(05.40) Fluctuations, processus aleatoires et mouvement Brownien
|
| Mots-clés : |
chaos numerical simulation Dynamical systems Nonlinear dynamics |
| Index. décimale : |
05.40 |
| Résumé : |
I One Dimensional Dynamics : 1 A Visual and Historical Tour. - 2 Examples of Dynamical Systems. - 3 Elementary Definitions. -4 Hyperbolicity. - 5 An Example: The Logistic Family. - 6 Symbolic Dynamics. - 7 Topological Conjugacy. - 8 Chaos. - 9 Structural Stability. - 10 Sharkovsky's Theorem. - 11 The Schwarzian Derivative . - 12 Bifurcations. - 13 Another View of Period Three. - 14 Period-Doubling Route to Chaos. - 15 Homoclinic Points and Bifurcations. - 16 Maps of the Circle. - 17 Morse-Smale Diffeomorphisms. - II Complex Dynamics : 18 Quadratic Maps Revisited. - 19 Normal Families and Exceptional Points . - 20 Periodic Points. - 21 Properties of the Julia Set. - 22 The Geometry of the Julia Sets. - 23 Neutral Periodic Points. - 24 The Mandelbrot Set. - 25 Rational Maps. - 26 The Exponential Family. - III Higher Dimensional Dynamics : 27 Dynamics of Linear Maps. - 28 The Smale Horseshoe Map. - 29 Hyperbolic Toral Automorphisms. - 30 Attractors. - 31 The Stable and Unstable Manifold Theorem. - 32 Global Results and Hyperbolic Maps. - 33 The Hopf Bifurcation. - 34 The Herron Map |