| Titre : |
Chaotic Dynamics : Fractals, Tilings, and Substitutions |
| Type de document : |
texte imprimé |
| Auteurs : |
Geoffrey R. Goodson, Auteur |
| Editeur : |
Cambridge : Cambridge University Press |
| Année de publication : |
2017 |
| Collection : |
Cambridge Mathematical Textbooks |
| Importance : |
XIV-402 P. |
| Présentation : |
Relie. Couv. en coul., graph. |
| Format : |
26 cm |
| ISBN/ISSN/EAN : |
978-1-107-11267-4 |
| Langues : |
Anglais (eng) |
| Catégories : |
(02.40) Geometrie, geometrie differentielle et topologie
|
| Mots-clés : |
Mathematical methods in physics Structure of fractals |
| Index. décimale : |
02.40 |
| Résumé : |
1 The orbits of one-dimensional maps - 2 Bifurcation and the logistic family. - 3 Sharkovsky's theorem. - 4 Dynamic on metric spaces. - 5 Countability, sets of measure zero and the cantor set. - 6 Devaney's definition of chaos. - 7 Conjugacy of dynamical systems. - 8 Singer's theorem. - 9 Conjugacy, fundamental domains and the tent family. - 10 Fractals. - 11 Newston's method for real quadratic and cubics. - 12 Coppel's theorem and a proof of Sharkovsk's theorem. - 13 Real linear transformations, The Hénon Map and Hyperbolic toral automorphisms. - 14 Elementary complex dynamics. - 15 Example of substitutions. - 16 Fractals arising from substitutions. - 17 Compactness in metric spaces ans an introduction to topological dynamics. - 18 Substituion dynamical systems. - 19 Sturmian sequences and irrational rotations. - 20 The multiple recurrence theorem of Furstenberg and Weiss |